
DGPS Receiver Software Description
Jim Bixby

bix@san.rr.com
November, 1998

Copyright Notice: The information in this document and in the zip archive are
copyright Jim Bixby 1998. License is granted to freely use, reproduce or modify this
material, for non-commercial purposes only. This information carries no warranty
of any kind, including any implied warranty of fitness for any particular purpose.

1. Introduction
2. Hardware
3. General Software Overview
4. Initialization
5. Interrupt Processing
6. CarrierVCO Interrupt
7. TMR0 Interrupt
8. Word Sync Algorithm
9. Frame Sync Algorithm
10. Serial Output Routine
11. Bit Edge Interrupt
12. Switch Press Interrupt
13. Confidence Test
14. Set PLL Routine
15. Set Bit Rate Routine
16. Background Processing
References

3.1 DGPS Header Structure
4.1 LCD Display
5.1 int Flowchart
6.1 CarrierVCO Interrupt
7.1 TMR0 Interrupt
8.1 Word Sync Algorithm
9.1 Frame Sync Algorithm
10.1 Serial Output Flowchart
11.1 Bit Edge Interrupt Flowchart
12.1 Switch Press Interrupt Flowchart
13.1 Confidence Test Flowchart
14.1 Set PLL Flowchart
15.1 Set Bit Rate Flowchart
16.1 Background Flowchart

DGPS Receiver Software Description Page 2
November, 1998

1. Introduction

This document describes the software component of a differential GPS
(DGPS) beacon receiver. The receiver can receive DGPS beacon transmissions in
the marine beacon band (285-325 kHz) and demodulate the transmissions to extract
the digital data stream with the DGPS information. A microprocessor takes that
data, and outputs SC104-format digital data to a “DGPS-ready” GPS receiver at
4800 or 9600 baud. Receiver status is displayed on a 16x2 LCD display.

2. Hardware

See the file Hardware.doc in the zip archive for a description of the hardware,
as well as a description of the files contained in the zip archive. It is assumed in
this description that the reader has read Hardware.doc.

3. General Software Overview

The receiver employs a PIC 16F84 processor from Microchip, and the code is
targeted to that processor. Interrupt processing is used to handle the bulk of the
processor tasks and is termed subsequently in this description as foreground
processing. When the foreground is not busy, control passes to the “main”
program, which works in the background to perform status monitoring.

Serial digital data arrives from the receiver on RB4 (PORTB, bit 4), at a rate
of 50, 100, or 200 bits/second (in the US, currently, only 100 and 200 bps
transmissions are used). A primary task of the processor is to synchronize to, and
read, the incoming serial stream. It does this by synchronizing TMR0 to produce an
TMR0 Overflow interrupt in the nominal middle of each incoming bit, so that the
receiver data can be sampled. In order to do that, the processor must determine the
incoming bit rate as well as perform the TMR0 synchronization. The bit
synchronization code is activated on each transition of the incoming data.

The bit synchronization algorithm starts with as initial assumption that the
bit rate is 50 bps. An interrupt occurs on each incoming bit transition, at which
time the phase of TMR0 is read, and compared against the ideal bit-edge value. An
adjustment is made to the TMR0 contents depending on whether the actual
incoming edge is leading or lagging the ideal location. Also, a check is made using a
maximum-likelihood confidence counter to see if this phase is consistent with the
bit synchronizer being “locked” to the incoming data -- that is, that the proper
period as well as phase has been determined. After a preponderance of indications
that the synchronizer is locked, the software finally becomes convinced and declares

DGPS Receiver Software Description Page 3
November, 1998

the synchronizer to be locked, after which the magnitude of the phase corrections is
reduced to maintain lock. Alternatively, the code may determine that the
synchronizer cannot lock under the bit rate assumption, at which time it changes
the bit rate assumption to try again to achieve lock. In this way, the bit
synchronizer hunts for and determines the correct bit rate and the correct bit phase.

Once the software bit synchronizer is locked, the code can then read each
incoming bit. The incoming data consists of 30-bit words, organized into frames
which have variable word length. The first two words of every frame are a two-
word frame header, and this header format is identical for every frame. Figure 3.1
shows the header format.

After bit synchronizing, the next objective is to find the word boundaries (the
incoming data consists of 30-bit words, with 24 bits of data and 6 bits of parity). It
accomplishes this by initially, on each incoming bit, checking for correct parity over
the previously received 32 bits (the parity computation involves the last two bits of
the previous word and all the bits of the current word). If a parity match is found,
the code assumes this might be a valid word boundary, so it goes into a mode to
start testing that boundary, every 30 bits, to see if parity remains good. After a
preponderance of good parity tests, the code declares itself to be in Word Sync.
Alternatively, after a number of failed tests, it declares this candidate position to be
incorrect and starts anew looking for a parity match.

After word synchronization is achieved, the next goal is to achieve frame
synchronization. DGPS frames are a variable number of words in length, with the
length of the frame contained in a frame header, which also contains a fixed 8-bit
preamble and a 3-bit sequence counter which increments on each frame (figure 3.1
above). The frame synchronization code initially looks for the preamble in the first
8 bits in each incoming word. When found, it thinks this might actually be the start
of a frame, so it saves the sequence number and the frame length. Then, <frame
length> words later, it looks again for the preamble, and for the correct sequence
number. After a preponderance of such tests being successful, it declares itself to be
in Frame Sync. While in frame sync, the Station ID is read from the incoming data
and displayed on the LCD. Alternatively, if the preponderance of tests fail, the
frame synchronization code declares itself to be out of sync, and starts all over
looking for the next candidate start of frame header.

DGPS Receiver Software Description Page 4
November, 1998

Bit Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

(First in time) (Last in time)
First Word Preamble Message Type Station I.D. Parity
Second Word Modified Z-Count Seq Num Frame Length StaHlth Parity

Preamble: Station I.D.: 10-bit number identifying the
0 1 1 0 0 1 1 0 beacon transmitter

Message Type: Seq Num: Counts 0-7, incrementing
Contains the Frame ID code, identifying on each frame
the data content in the frame

Modified Z-Count: Frame Length: the total frame is
Increments each 0.6 sec 2 words longer than this value

Parity: six bits, computed over the StaHlth: Station Health
24 data bits of this word and bits Indicates a bad station, or, if good,
29 and 30 of the previous word gives info about the resolution

of corrections

Figure 3.1
DGPS Header Format

The bit synchronizer algorithm is triggered by transitions on the incoming
data, while the processing to achieve word and frame synchronization is
accomplished on TMR0 overflow interrupts when the value of each bit is read. The
former occurs at the edge of incoming bit boundaries, and the latter occurs in the
middle of incoming bit boundaries. After the word and frame synchronization code
has executed on a TMR0 overflow event, the interrupt handler then looks to see if
there is any data which needs to be sent to the LCD or to the SC104 serial output.
One character can be sent to each port, on each TMR0 interrupt. SC104 data is
sent every six incoming data bits, whether the processor believes itself to be
synchronized or not. The GPS receiver has its own logic to independently perform
word and frame synchronization and extract the data to perform the differential
correction. LCD data is sent whenever the background routine determines that a
change is needed to the LCD display. The background handles the job of
determining exactly what should be sent to the LCD, while the foreground handles
the task of actually sending the character.

The TMR0 interrupt handler also schedules a check on each pass to see if the
FM Demodulator phase lock loop is indeed locked. It does this by enabling the
hardware RB0/INT interrupt. After the TMR0 code has finished and global
interrupts are turned back on, the processor will almost immediately be interrupted
by the next rising edge of the Carrier VCO signal. When the Carrier VCO
transitions high, the Detector signal should be in a low state, if the Carrier VCO is
locked to the Detector signal. This is tested and the same maximum-likelihood
confidence test is used to determine if the PLL is indeed locked. Further interrupts
from this source are then disabled, so that only one test is made per bit period to

DGPS Receiver Software Description Page 5
November, 1998

reduce the load on the processor while still sufficient tests per second to get a timely
update of the display.

The final event handled by the foreground is switch presses. There are two
switches to control the receiver: UP and DOWN. Pressing UP moves the receiver
up one channel (channels are spaced 1 kHz apart) and pressing DOWN moves the
receiver down one channel. A switch press causes a processor interrupt, at which
time the processor reads the switches to determine which was pressed, computes
the new receiver frequency, and sends the needed information to the digital
frequency synthesizer which creates the first local oscillator for the receiver. There
is provision in the code for a third switch, MODE, intended for possible future
expansion of the code to allow, for instance, for automatic scan for a good channel,
or test modes. MODE is not implemented in this version of the software. This
receiver is also totally manual in operation, and does not accept NMEA control
information from a GPS receiver, another arena for possible modification of the
software.

4. Initialization

The initialization sequence is to:
Wait for power to come up
Initialize stuff
Turn on interrupts
Initialize the LCD
Display the initial frequency and bit rate

Init:
Called on power up only.

Reads the jumper to determine the SC104 output bit rate (4800 or
9600 baud) and sets Bit_K, a register used to determine the length of
one output bit.

Then, initialization data is sent to the frequency synthesizer chip, and
the last channel to which the receiver was tuned is read from the
processor’s eeprom and used to initialize the receiver frequency. Init
then resets all of the synchronization status information of the
receiver, starts the bit synchronizer off at 50 bps, and exits.

Init_LCD:
Called during the initialization phase only.

First, the LCD is initialized according to the spec for LCDs which use
the Hitachi 44780 or compatible controller chip, which covers just

DGPS Receiver Software Description Page 6
November, 1998

about all character displays. The LCD is initialized for 8-bit data
interface mode, 5x8 font, no cursor, no blinking. Then, the static
portion of the display is sent to the LCD. Figure 4.1 shows the display
in normal operation. For the station ID field, this design follows the
philosophy of being very critical about when it displays the ID, and if it
has the slightest indication that the ID field may be invalid, it displays
dashes instead of a possibly incorrect station ID. So initially, the
Station ID field is displayed as dashes.

302k ID SICBWFP
102b 262 +++++++

Figure 4.1
LCD Display

5. Interrupt Processing

Once the receiver is initialized, the bulk of the processing happens in the
foreground via the interrupt handler. Figure 5.1 shows the flowchart of the
interrupt processing sequence. On any interrupt from any of the sources, all
possible sources are checked. After a source has been determined, the code
continues to check the other possible sources anyway, because receiver noise can
cause bit edge interrupts at odd times, for instance.

If one could place an ‘activity’ probe on the interrupt service routine, there
would be bursts of activity at the middle of incoming bits, when TMR0 overflows to
mark the middle of bits, and at bit edges in the middle of the TMR0 count. If
requests are pending to send out an LCD character and also an SC104 character,
and also it happens to be a word boundary so that the parity, word sync and frame
sync algorithms need to run, then it can take about 2 milliseconds to complete this
work. The time is dominated by the time needed to send out the SC104 character,
which at 4800 baud is 1.87 ms (time is needed for 9 bits, since the routine does not
wait around for the stop bit to be timed once sent). Since a bit period at 200 bps for
the incoming data is only 5 ms, the TMR0 routine gets done just in time for a bit
transition to arrive.

DGPS Receiver Software Description Page 7
November, 1998

int

Save registers

CarrierVCO
int enabled?

Is this a
CarrierVCO

int?

Process
CarrierVCO

interrupt

Is this a TMR0
interrupt?

Process
TMR0

interrupt

Switch press
or bit edge?

Bit Edge?

Process
Bit Edge

Switch Press?

Process
Switch
Press

Reset interrupt
enables

Exit int handler

Yes Yes

No
No

Yes

No

Yes

Yes

No

Yes

No

No

int

_int_chk_tmr

_int_chk_edge

_int_chk_switch

exit_int

Restore registers

_int_restore

Figure 5.1
int Flowchart

6. CarrierVCO Interrupt

Figure 6.1 shows the flowchart for processing the CarrierVCO interrupt. The
CarrierVCO signal is at 3khz, locked to the incoming carrier from the receiver. This
interrupt service routine checks to see if the CarrierVCO is indeed locked.

In lock, the CarrierVCO signal should be 90 degrees out of phase from the
receiver carrier output signal (named Detector). So, if this interrupt is enabled, it
just looks at the Detector signal to see if it is low, and counts a confidence counter

DGPS Receiver Software Description Page 8
November, 1998

up or down. If the confidence counter overflows, then lock is declared, and if it
underflows, out-of-lock is declared, for display on the LCD.

This interrupt is enabled when the TMR0 service routine completes, and
after executing itself it then disables further CarrierVCO interrupts, until the
TMR0 routine reenables it. This limits the rate of checking to the incoming bit rate,
so that the processor will not spend an inordinate amount of time doing this test.

CarrierVCO
interrupt.

Set up confidence
test assuming a

good test

Detector signal
low?

Setup confidence
test for a bad test

Update
Confidence

register

Overflow?

Was overflow
high or low?

Set CarrierFlag to
indicate locked

Clear Carrier Flag
to indicate
unlocked

Disable
CarrierVCO
interrupts

Return

Yes

No

No

Yes

LowHigh

_exit_carrier

Figure 6.1
CarrierVCO Interrupt

DGPS Receiver Software Description Page 9
November, 1998

7. TMR0 Interrupt

Figure 7.1 shows the TMR0 Interrupt flowchart. This interrupt occurs in the
middle of each incoming data bit from the receiver, and is where the bulk of the
synchronization code takes place. After immediately reloading the timer to start
another bit interval, it reads the incoming data bit, and shifts the bit into the

SC104 output character, which
when sent out contains the last
six received bits. When the six
bits have been received, a
request flag is set to tell the
serial output routine to send it
later.

Then, the bit is shifted
into a long accumulator
(Data_A thru Data_E) which
contains the last 40 bits
received. The objective of the
word sync algorithm is to figure
out when the 24 data bits of an
incoming word are aligned in
Data_B, Data_C and Data_D.
This is explained in detail later
in this document. After word
sync has been achieved, the
service routine then does a
similar algorithm to determine
where frame boundaries are.
Finally, the Serial Output
routines handles any pending
output requests and the
interrupt is released.

TMR0
Interrupt

Reload the timer

Read next input bit
from receiver

Shift bit into SC104
output character

6 bits
in output

character?

Save char, set flag
to send it later

Reset bit counter,
clear output char

Do Word
Sync check

Do Frame
Sync check

Do Serial
Output

Return

Put new bit in
accumulated input

registers

Testing a word
sync position?

Is this the
30th bit?Yes

No
Yes No

Check Parity

dotest

Figure 7.1
TMR0 Interrupt

DGPS Receiver Software Description Page 10
November, 1998

8. Word Sync Algorithm

Figure 8.1 shows the Word Sync algorithm flowchart. The processor starts
out checking on every incoming bit to see if parity is good, which means that this bit
position might indeed be a word boundary. Once a position with good parity is
found, a flag TrialWordSync is set to indicate that we should switch to checking
only every 30 bits. This flag stays true until the confidence test indicates that this
is not in fact a valid word boundary. The results of the confidence test are
monitored to make the decisions as to whether to declare this position correct, or
incorrect and start the synchronization process over, or to just continue testing.

Word Sync

Set
GoodParityFlag, to
show good parity

Are we testing
a trial location?

Good Parity?
Clear

GoodParityFlag, to
show bad parity

No Yes

Setup conf test to
count up

Do
Confidence

Test

Overflow?

Set WordSyncFlag
to show in sync

Yes

Are we testing
a trial location?

Setup conf test to
count down

Do
Confidence

Test

Underflow?

Clear
TrialWordSync flag
to show we want to

start testing the
next position

Return

Set TrialWordSync
flag to show we
want to continue

testing this position

Init WordSync and
FrameSync conf.
registers to mid

scale

Mark StationID as
invalid

YesNo

Clear
WordSyncFlag and
FrameSyncFlag to
show both out of

sync

Yes

No

No No

start_trial

DropSync

badparity

WSDone

Figure 8.1
Word Sync Algorithm

DGPS Receiver Software Description Page 11
November, 1998

9. Frame Sync Algorithm

Figure 9.1 shows the Frame Sync algorithm flowchart. If we are not in Word
Sync, it exits immediately. Otherwise, it uses a flag TrialFrameSync to determine
if we are testing every word boundary to find the first candidate frame boundary, or
if we have advanced to testing candidate frame boundaries. The test for frame sync
is a bit more complicated than that for word sync. DGPS frames contain a variable
number of words, indicated in the frame header, which also contains a three-bit
sequence number which increments on each frame. The frame sync test criteria is
the preamble is found in the right position, and that the sequence number is
correct, at the right word indicated by the frame length from the previous frame.

Once frame
sync is achieved,
this routine also
picks out and saves
the StationID for
display on the
LCD. It is very
fussy about
accepting data for
display, and if it
gets a hint that the
StationID field
may be incorrect, it
marks it as invalid
by setting the sign
bit. The
background
routine detects this
change, and
replaces the ID
display with
dashes.

Frame Sync

Init FrameSync conf
counter to mid scale

Do Confidence
Test

Are we in
Word Sync?

Return

Testing a
trial Frame Sync

location?

No

Preamble in
prior word?

No

Return

Mark StationID as
invalid

Set TrialFrameSync
flag to show we want

to continue testing this
location

Yes

Clear word counter

Save Seq Num and
Frame Length

Mark StationID as
invalid

In
Frame Sync,

and good parity,
and good frame

sync test?

Save StationID (which
also marks it valid)

Return

Yes

No

Right time
to test?

Yes

Preamble in
prior word?

Good Seq Num?

Set GoodFSTest flag to
mark this as a good test

Yes

Yes

Yes

Setup to count FS conf
counter up

Clear GoodFSTest flag
to mark this as a bad test

Setup to count FS conf
counter down

No

No

Over- or
underflow?

Return No

Overflow?
Set

FrameSyncFlag
to show in sync

Yes

Yes

Clear FrameSyncFlag
to show out of sync

Init FrameSync conf
counter to mid scale

Clear TrialFrameSync
flag to start test over

Mark StationID as
invalid

Return

No

Yes

No

Return

No

FrSync

BadFS

DoFSConf

FSReject

FSNotTrying

Exit_FS

FSDoneFSDone

FSDone

FSDone

FSDone

Figure 9.1
Frame Sync Algorithm

DGPS Receiver Software Description Page 12
November, 1998

10. Serial Output

Figure 10.1 shows the Serial Output
flowchart, which is very straight forward.
Output is allowed only during the TMR0
interrupt service routine, one character at a time
to each of the LCD display and the serial SC104
output. LCD character outputs are requested
only by the background routine, by setting
LCDFlag, and SC104 outputs are requested only
by the TMR0 service routine. Upon outputting
the requested character, this routine clears the
request flags to indicate that the operation was
completed.

Serial Output

Return

Switch PORTB to
output

LCDFlag true?

Output the LCD
char

Switch PORTB to
input and clear

LCDFlag

SC104Flag
true?

Send the SC104
char

Clear SC104 flag

Yes

YesNo

No

SerOut

lcdsend

_chk_Sc104

_do_serial

_SC104_Done

SerDone

Figure 10.1
Serial Output Flowchart

DGPS Receiver Software Description Page 13
November, 1998

11. Bit Edge Interrupt

Figure 11.1 shows the flowchart for processing a bit edge, which is used for
adjusting the TMR0 phase so that it overflows in the middle of incoming data bits,
and is the process of achieving bit synchronization.

On each detected the edge, the routine reads the TMR0 value, and compares
it against an ideal value (SyncCenter). If the location of the bit edge indicates that
the TMR0 value should be adjusted (which changes the timing of when TMR0
overflow interrupts occur relative to the incoming bit stream), an adjustment is
made.

This bit synchronizer uses two constants: PhaseLimit and Window.
PhaseLimit is the absolute value of the magnitude of corrections allowed to be made
to TMR0, and Window is the absolute value of the number of counts to either side of
SyncCenter during which a bit edge event is determined to indicate that the
synchronizer is locked -- edges which occur outside of Window are taken as
indications that the bit synchronizer is not locked. PhaseLimit must be smaller
than Window for this routine to operate correctly.

If an incoming edge is within PhaseLimit and the synchronizer is not locked,
then the measured error is used to change TMR0. If the incoming edge is outside of
PhaseLimit and the synchronizer is not locked, then the correction to TMR0 is
limited to PhaseLimit, rather than the full error. This is done to prevent spurious
noise pulses from unduly influencing TMR0 even when not locked.

If the synchronizer is locked, then the magnitude of the correction to TMR0 is
limited to only plus or minus one count -- once lock has been achieved, we really
don’t want noise disrupting the phase of TMR0.

The test for determining whether lock has been achieved or not is the (now
familiar) confidence test used for all other sync determinations by this program. If
the algorithm determines it is out of lock, it tries to lock at the next higher bit rate,
unless it was already trying at 200 bps in which case it rolls back to 50 bps. In this
way, the algorithm automatically hunts for and determines the correct bit rate.

DGPS Receiver Software Description Page 14
November, 1998

Bit Edge

Return

Read the RcvrData bit

Did it change?

Clear BadSyncFlag (assume
this test will be good)

Calculate phase error by reading TMR0 and
comparing with SyncCenter

Phase
 error?

Leading Lagging

Zero

Yes

No

Error >
PhaseLimit?

Error >
Window?

Set BadSyncFlag to
remember out of bounds

Set error to Phase Limit

Yes

Yes

In BitSync?

No

Set error = 1

Subtract error from TMR0

No

Yes

Error >
PhaseLimit?

Error >
Window?

Yes

Set BadSyncFlag to
remember out of bounds

Set error to Phase Limit

In BitSync?

Add error to TMR0

No

Set error = 1 Yes

Yes

No

NoNo

Set up confidence test for up or down
count, depending on BadSyncFlag

Do
Confidence

Test

Over- or
underflow?

Declare Bit Sync (set
BitSyncFlag)

Declare Out of Bit Sync
(clear BitSyncFlag)

Decrement Bit Rate

BitRate=0?

Set BitRate to 3 (50 bps)

Set Bit Rate

Return

Under

No

Over

No

Yes

_int_chk_edge

_lag_adj

_leading

_lead_adj

_end_adjust

_into_bitsync

_exit_BitEdge

Figure 11.1
Bit Edge Interrupt Flowchart

DGPS Receiver Software Description Page 15
November, 1998

12. Switch Press Interrupt

Figure 12.1 shows the Switch Press flowchart. Switch presses on the UP or
Down pushbuttons cause an interrupt throught the PIC’s interrupt-on-change
capability. This routine simply determines which (if any) of the switches were
pressed, and increments Chan, the channel number, appropriately. Then it calls
Set_PLL to output the new frequency to the LO synthesizer chip, and sets a flag
(LCDFreqUpdRqst) to request the background routine to update the LCD display.

This receiver operates on channel spacings of 1 khz, so there are 41 channels
in the marine beacon band of 285-325 khz. Chan has values of zero to 40 to specify
the channel, with Chan=0 corresponding to 285 khz. If Chan is incremented above
40 it rolls over to zero, and if it is decremented below zero it rolls around to 40.

At the conclusion of incrementing or decrementing Chan, the routine
debounces the switch by sitting in a loop waiting for both switches to be up before
exiting.

Switch Press

ReturnIncrement Chan

UP Pressed?

Set_PLL to
new channel

DOWN
Pressed?

Chan > 40?

Set Chan=0

Decrement Chan

Chan < 0?

Set Chan=40

Set LCDFreqUpdRqst
flag to request

background to update
the LCD display

Wait for both switches
to be released

Return

Yes

No

Yes

Yes

No No

Yes

No

_int_chk_switch

_checkDown

_newchan

_swloop

Figure 12.1
Switch Press Interrupt Flowchart

DGPS Receiver Software Description Page 16
November, 1998

13. Confidence Test

Figure 13.1 shows the Confidence Test flowchart. This test is used to make
decisions about whether the CarrierVCO is locked to the incoming signal, about bit
sync lock status, and about word and frame sync lock status. This test amounts to a
maximum likelihood test, and it tests a hypthosis until sufficient confidence has
been achieved to declare the hypothesis true or false. At any point in time, the
confidence counter value
represents a measure of the
probability that the hypothesis
is true. It is a very
sophisticated test which
happens also to be
computationally very efficient
and easy to optimize by trial
and error.

Lets take the case of bit
synchronization. In that case,
we start with the hypothesis
that the bit synchronizer has
determined the correct phase of
the incoming data and is
locked. If bit edges fall within
a window of the right time,
such events tend to confirm the
hypothesis. If bit edges fall
outside of the window, such
events tend to make us
disbelieve the hypothesis. At
any time, there are
probabilities that a bit edge
will occur within the window,
influenced by both channel
noise which can cause spurious
edges to occur and by the actual phase of the bit synchronizer (ie, actually locked or
not). If a bit edge occurs within the window, then an amount (up-count value) is
added to the confidence register. If a bit edge occurs outside of the window, then an
amount (down-count value) is subtracted from the confidence register. If the
counter overflows at the high end, then we say we have developed enough
confidence to declare the synchronizer to be locked, and if the counter underflows at
the bottom end, then we say we have developed enough confidence to declare the
synchronizer to be out of lock. In between, we say that we simply have not
developed sufficient confidence to make a call. Mathematically, this counter

Confidence Test

Return

Was
count value up,

or down?

Add count value to
counter

Down

Underflow?

Set Carry to show
over/underflow and

Z to designate
underflow

Overflow?

Set Carry to show
over/underflow and

clear Z to
designate overfflow

Up

Clear Carry to
show we stayed

inbounds

Yes Yes

No No

ConfCntr

_conf_up

_inbounds

Figure 13.1
Confidence Test Flowchart

DGPS Receiver Software Description Page 17
November, 1998

operation amounts to adding and subtracting logarithms of conditional probabilities
of a sequence of observations.

The ratio of the up-count to down-count values is determined by the
probabilities of each indication, given the hypothesis that we are locked. Thus, if
the channel is very quiet and false bit edges never occur, the ratio could be very
large. On the other hand, if there is noise, then the ratio should be reduced to
reflect the notion that each event is telling us less, in the presence of noise.

The overall magnitude of the count values relative to the counter overflow
limits determines how quickly the test can reach a conclusion, and their optimum
values are also set by the apriori probability that the hypothesis is true, by the
amount of noise in the indications, and by the desired confidence level.

14. Set_PLL

This routine converts the Chan
value to a frequency, and outputs it to the
frequency synthesizer chip. Since it is
only called on frequency changes, it also
initializes the bit synchronizer to start
testing at 50 bps, and resets the sync
status of all of the sync indicators.

15. Set Bit Rate Routine

This routine sets up TMR0 and its
prescaler to count at a period equal to the
assumed bit rate.

Set PLL

Add Channel
number to the first
LO base frequency

Send the 32-bit
control word to the

PLL

Save the Channel
number in
EEPROM

Reset all sync
status to 'out of

sync'

Set the Bit Rate to
3 (50 bps)

Set Bit Rate

Return

Set_PLL

Figure 14.1
Set PLL

Flowchart

Disable TMR0
interrupts

Set Bit Rate

Save this Bit Rate

Declare out of Bit
Sync

Set the TMR0
prescaler

Load TMR0 to time
one bit interval

Clear any TMR0
pending interrupt

Enable TMR0
interrupts

Return

SetBitRate

Figure 15.1
Set Bit Rate
Flowchart

DGPS Receiver Software Description Page 18
November, 1998

16. Background Processing

Figure 16.1 shows the flowchart for background processing, which is being
executed whenever the interrupt handler is not busy. Basically, it constantly
monitors for changes in synchronization and lock status, and updates the LCD
display.

Background

Clear LCDFreqUpdRqst

LCDFreqUpdRqst?
Update Freq. on

LCD

Read CarrierDet bit
from hdwr and put

in CurrSync

Read SynthLock
bit from hdwr and
put in CurrSync

Any change in
CurrSync from last

pass?

Update the sync status
display on the LCD

Save CurrSync to
compare on next pass

Has the
StationID
changed?

Update StationID
display on LCD

Has the
BitRate

changed?

Update Bit Rate
display on LCD

background

DisplayStatus

DispStaID
DispSta

DispBR

Figure 16.1
Background Flowchart

DGPS Receiver Software Description Page 19
November, 1998

References:

RTCM Recommended Standards for Differential NAVSTAR GPS Service,
Version 21. RTCM Spcial Committee No. 104. May be purchased
from

Radio Technical Commission for Maritime Services
655 Fifteenth Street, NW, Suite 300
Washington, D.C. 20005

MC145162 Data Sheet
May be downloaded from
http://mot2.indirect.com/books/dl110/pdf/mc145162rev3-1.pdf

PIC 16F84 manual
May be downloaded from
http://www.microchip.com/download/lit/micros/30430c.pdf

Interface Control Document, IDC200
May be downloaded from
http://www.navcen.uscg.mil/gps/geninfo/gpsdocuments/icd200/icd200c.pdf
(It contains the details of the parity calculation, which is the same as used in
GPS receivers.)

LCD Technical Reference FAQ:
ftp://toleak.etec.wwu.edu/pub/lcd_faq.txt

